Limited protection of the primary visual cortex from the effects of monocular deprivation by strabismus.
نویسندگان
چکیده
Competition between the two eyes for synaptic space is thought to play a crucial role in the developmental plasticity of ocular dominance in the primary visual cortex. This competition should be disrupted if geniculocortical afferents from the two eyes are spatially segregated. In kittens, strabismus was induced in one eye before the onset of the critical period; the effects of a brief period of monocular deprivation (MD) at the height of the critical period and subsequent recovery were assessed in a longitudinal study employing optical imaging of intrinsic signals. Results were compared with those from a control group without strabismus. MD caused a substantial loss of cortical territory dominated by the deprived eye in all animals. However, in the strabismic animals this loss was smaller than in the control group for the hemisphere contralateral to the deprived eye. When the deprived eye was reopened, recovery of cortical territory was remarkably rapid in all kittens, and close to pre-deprivation responses were attained within 3-4 days of reopening. However, kittens without strabismus exhibited a greater rate of recovery from MD. Moreover, recovery of visual acuity, as assessed by visually evoked potential (VEP) measurements, was slower and less complete in animals with strabismus prior to MD. Therefore, strabismus does not provide lasting protection against the effects of MD.
منابع مشابه
Effects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملEffects of visual deprivation on synaptic plasticity of visual cortex
TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...
متن کاملAcuity-independent effects of visual deprivation on human visual cortex.
Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To sh...
متن کاملShort-term monocular deprivation alters early components of visual evoked potentials.
KEY POINTS Short-term monocular deprivation in adult humans produces a perceptual boost of the deprived eye reflecting homeostatic plasticity. Visual evoked potentials (VEPs) to transient stimuli change after 150 min of monocular deprivation in adult humans. The amplitude of the C1 component of the VEP at a latency of about 100 ms increases for the deprived eye and decreases for the non-deprive...
متن کاملCritical periods for effects of monocular deprivation: differences between striate and extrastriate cortex.
The critical period of susceptibility to effects of monocular deprivation was compared in striate cortex and the lateral suprasylvian (LS) visual area of cortex. Twenty-three cats received monocular lid suture for a period of 4 weeks beginning at 4, 12, 18, 26, or 35 weeks of age or as adults. Immediately following the deprivation, single cell recordings were carried out in both cortical areas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2005